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ABSTRACT: The tensile behavior under monotonic load-
ing and stress-relaxation testing of an epoxy resin has been
studied. Experimental data at various strain rates and three
temperatures from ambient up to just below T, were per-
formed, to study the transition from the brittle behavior to a
ductile and therefore viscoplastic one. Dynamic mechanical
analysis was applied to study the glass transition region of
the material. Furthermore, a three-dimensional viscoplastic
model was used to simulate the experimental results. This
model incorporates all features of yield, strain softening,
strain hardening, and rate/temperature dependence. The
multiplicative decomposition of the deformation tensor into
an elastic and viscoplastic part has also been applied, fol-

lowing the element arrangement in the mechanical model. A
stress-dependent viscosity was controlling the stress—strain
material behavior, involving model parameters, calculated
from the Eyring plots. A new equation for the evolution of
the activation volume with deformation was proposed,
based on a probability density function. The model capabil-
ity was further verified by applying the same set of param-
eters to predict with a good accuracy the stress-relaxation
data as well. © 2006 Wiley Periodicals, Inc. ] Appl Polym Sci 101:
2027-2033, 2006
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INTRODUCTION

The mechanical behavior of amorphous glassy poly-
mers at room temperature has been extensively stud-
ied, and the corresponding constitutive equations
have been introduced in a wide strain rate range. In
the glassy state, amorphous polymers exhibit either
nonlinear viscoelastic-viscoplastic or brittle behavior.
Ductile response is easily observed in glassy polymers
at temperatures close to the glass transition T,. Gen-
erally, at temperatures higher than T, the behavior of
polymers is described by the rubber elasticity theory
or chain reptation. Constitutive models for the stress—
strain behavior of polymers below, through and above
T, have been presented in earlier works.'™

Below and near T, a combination of rubbery behav-
ior and that due to the intermolecular interaction is
observed. Different physical approaches have been
introduced to provide a description of mechanical
behavior of glassy polymers at finite deformations.*~®
The viscoelastic and viscoplastic deformations of
amorphous polymeric materials has been related to
their microstructural state.**'° Yield and plastic flow
in glassy polystyrene has been extensively studied'"'?
in a wide range of molecular weights. Their constitu-
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tive response was examined in terms of a physically
based three-dimensional constitutive model for small
or large deformations in amorphous polymers."® The
above model named “glass-rubber” constitutive
model displays glassy response at low temperatures
and short time scale, and rubber like response at high
temperatures and long-time scales. Its main assump-
tion is the additivity of free energies of bond distortion
and conformation perturbation. Correspondingly, lin-
ear elasticity, Eyring viscous flow, and the Edwards—
Vilgis entropy function have been employed, while
the temperature dependence was introduced through
Arrhenius equation. Later, Dooling et al.,'* based on
the glass—rubber constitutive model of Buckley and
Jones,* developed a 3D constitutive model for large
deformations, that captures the major features of re-
sponse, which are observed experimentally on both
sides of the T,. It was demonstrated that this model
appears wider applicability, as it has been applied for
high molecular weight polymethylmethacrylate
(PMMA). Moreover, this model was extended to in-
clude a relaxation spectrum for the conformational
stresses appropriate to fit the high molecular weight
PMMA. The three-dimensional finite deformation of
amorphous polymers regarding the plastic flow pro-
cess, strain softening, and the strain hardening re-
sponse has been extensively described in a series of
works.'>™"” Most of these works are based on the rate
dependence of yield stress, or equivalently the defor-
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mation behavior is described by a single relaxation
time, dependent on equivalent stress. Later in a work
by Tervoort et al.'"® a “compressible-Leonov model ”
was introduced in which the elastic volume response
is rigorously separated from the elasto-viscoplastic
isochoric deformation. The deviatoric response was
determined by a stress-dependent relaxation time,
while the volume response remains elastic.

In the present work, the deformation behavior at
small and finite strains of an epoxy glassy polymer has
been studied. The material was chosen as a typical
amorphous glassy polymer that includes chemical
crosslinks. With varying temperature its behavior is
transformed from a brittle to a ductile one. In this case,
the material exhibits strong rate dependent effect. Ten-
sile tests at three strain rates and at three tempera-
tures, from ambient up to temperature close to the T,,
were performed. Also stress relaxation experiments
were performed at a constant strain level with varying
temperature. The material behavior was described us-
ing a viscoplastic model consisting of a nonlinear
Maxwell model, that involves an Eyring dashpot, in
parallel with a Langevin spring. With this model, the
yield behavior of the polymeric material is described,
using a stress-dependent relaxation time, while the
Langevin spring accounts for the postyield strain
hardening stage. The strain softening was formulated
assuming an activation volume evolution in respect to
deformation through a probability density function.
The model was proved to be capable of capturing the
main features of material response, with the same set
of parameters for both tensile and stress-relaxation
experiments.

MATERIALS AND METHODS

The material which was selected to be studied was an
epoxy resin under the commercial name DERAKANE
411-45. It is based on a bisphenol-A glycidylether
mixed with methacrylic acid. Benzoyl peroxide was
used as an initiator. Curing takes place at room tem-
perature, and a post curing procedure at 85°C for 5 h
has been applied. The physical properties of the epoxy
resin used are: viscosity = 440 cP, density = 1.04
g/cm?, and gel time = 10—-60 min. Dumbell specimens
under the average dimensions 15 mm width, 3 mm
thickness, and an average gauge length of 100 mm,
were used for the tensile testing. The tensile experi-
ments were performed at room temperature with an
Instron 1121 type tester at three different strain rates,
namely 8.33 X 107°, 3.33 X 107 %, 1.66 X 107> sec” "
The deformation could be measured very accurately at
every localized region, along the total gauge length.
The experimental procedure followed, is based on a
noncontact method with a laser extensometer, de-
scribed in detail in a previous work." This method
permits the noncontact measurement of the longitudi-
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Figure 1 Schematic presentation of the mechanical model
in one dimension.

nal deformation distribution along the specimen
gauge length. For the axial elongation measurements a
contrasting tape pattern code was applied, in terms of
a number of white stripes on dark ground. True
stress—strain curves were then constructed in respect
to that part of the gauge length with the maximum
strain. Correspondingly, tensile tests at the same strain
rates were performed at temperatures 60 and 80°C
with a high temperature chamber series 3119-406 of
Instron Ltd.

Dynamic mechanical analysis (DMA) experiments
were performed using the PerkinElmer DMA 7e in-
strument. The mode of deformation applied was three
point bending, and the mean dimensions of samples
were 4 mm X 20 mm, while the mean thickness was 3
mm. The temperature range varied from —100°C up to
220°C. The temperature dependent behavior was
studied by monitoring changes in force and phase
angle, keeping the amplitude of oscillation constant.
The frequency was 1 Hz and the heating rate 5°C/min.
The T, value of the material, as obtained from the peak
temperature of tan §, was around 90°C.

Moreover, stress-relaxation experiments were car-
ried out at 60 and 80°C, with the same Instron tester.
The sample was subjected to an initial elongation,
which corresponds to a strain equal to 0.015, with a
crosshead speed of 200 mm/min. The Instron panel
was modified to allow interfacing to a computer for
full information of the test. The variation of load ver-
sus time was recorded with a sampling rate of 1.8 pt/s
over a period of 2 h. Data recorded within the first 10 s
after the initial application of strain were not used in
calculations, to ensure that a true state of stress is
being observed.

CONSTITUTIVE ANALYSIS

The mechanical model, shown in Figure 1, consists of
a nonlinear Maxwell model connected in parallel with
a Langevin spring. The Maxwell element involves a
linear elastic spring which is related to the initial
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elastic response, and an Eyring dashpot to account for
the nonlinear viscoplastic material response. This ele-
ment is capable of capturing the rate and temperature
dependence, which is a main feature of polymeric
structure. The Langevin spring has to do with the
entropy change, because of the molecular alignment of
macromolecular chains at high strains. The arrange-
ment of these elements results in the expression:

F = FF (1)

where F is the total deformation gradient tensor, F* is
the deformation gradient acting on the elastic spring,
and F? is the deformation gradient acting on the vis-
coplastic element (Eyring dashpot).*® This decompo-
sition suggests that there is an intermediate configu-
ration, obtained from the current configuration by
unloading to a zero stress state. The total deformation
gradient tensor F acts also on the Langevin spring, and
therefore concerns the rubbery behavior of the mate-
rial. The multiplicative decomposition of the deforma-
tion gradient in eq. (1), into the elastic and plastic part,
introduced by Lee,” has been extended here to com-
bine the elastic and viscoplastic parts. Analogous
treatments have been applied in a series of
works. 131422

Following eq. (1) the velocity gradient tensor of the
viscoplastic contribution is given by:

L =FF ' =D+ W (2)

where D” and W are the symmetric and antisymmet-
ric part of L” and express the viscoplastic stretch rate
and viscoplastic spin tensor correspondingly. It will be
assumed that W = 0, since our analysis includes ten-
sile testing of an isotropic material, and the total spin
W is also equal to zero.

Taking into account the non-Newtonian fluid rela-
tionship that must be valid for the Eyring dashpot of
the mechanical model, and generalizing into a three
dimensional problem, we have:

T° = 2n(7.) D* 3)

where T? is the stress acting on the viscoplastic ele-
ment and () is a stress-dependent (Eyring type)
viscosity that will be analytically defined in the fol-
lowing. For a more accurate description, T¢ should be
replaced by T = R”T’R® where T% is the stress trans-
formed to its relaxed configuration.

Moreover, the total Cauchy stress will be given by:

T=T +T¢ (4)

where TX is the stress related with the Langevin spring
(hyperelastic response).
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When the yield flow procedure is modeled using an
Eyring-flow process, it is assumed that the free energy
barrier for molecular jumping becomes asymmetric
with the application of stress.”>** For a one-dimen-
sional process, the Eyring model gives:

p 1 . h(TVO
Y= ZSII’I ﬁ (5)

where ¥’ is the plastic shear rate, 7is the applied shear
stress, V, is the activation volume, R the gas constant,
and T is the temperature. A is given by:

(6)

AH
A=A exp( )

" RT

with A, the fundamental vibration frequency and AH
the activation energy.
Setting 7, = RT/V, eq. (5) can be rewritten as:
T = 7y arc sin h(A¥) (7)
Through eq. (7) a viscosity can be defined as:

o T _ Tarc sin h(A¥")
n(y") = v= e (8)

Eyring model (eq. (5)) can be generalized into three
dimensions as follows'®?*:

. 1 . Teq VO
Veq = Zsmh RT 9)
where
1
Teq = \/2 tr(TY - T°) (10)
and
Yeq = \2(D- DY) (11)

Approximating hyperbolic sine function we have:

) 1 Teq
qu = Zexp ?0 (12)
Consequently, a generalized stress-dependent vis-
cosity is obtained:

(7o) = 2 = 4 (Teq) ex ( Teq) (13)
= — = T — _
n yeq ’qu 0 To p To

Equation (13) expresses the stress dependence of
Eyring viscosity. At low stress where 7., << 7, the
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viscosity is equal to the zero-shear viscosity 1, = A,.
The main concept of Eyring equation is that deforma-
tion procedure at low stresses is accelerated by
stress.*

Effects such as the pressure dependence of yielding
as well as strain softening have been incorporated into
the Eyring equation.”**

As deformation proceeds, the molecular chains tend
to align along the directions of principal plastic
stretches. The configurational entropy of the system is
then decreased and an internal network-stress state is
created. This back stress, is the stress acting on the
hyperelastic rubbery spring and can be modeled
through a statistical mechanics of rubber elasticity
model>":

N A1
TR = Cpon (ML | = 2 DALY || (14)
3 \"N 3/'—1 ] \’W

where Cy is a rubbery modulus, N is the number of
rigid chain links between chemical crosslinks, and A;
are the principal stretch ratios, obtained by the total
deformation gradient F-L™' is the inverse Langevin
function.

This element can be related with a prominent fea-
ture of polymeric response: that is the strain harden-
ing at large strains, which is considered to result from
the Gaussian nature of the entropy function at large
strains, due to the molecular alignment. This effect
was observed experimentally by several techniques.
Usually, constitutive modeling of strain hardening be-
havior is based on the concept of entanglements. In the
well known Haward and Thackray*® model, both the
rubber-elastic response and finite extensibility were
incorporated. Later, it was extended into a 3-D finite
strain formulation.!® Moreover, a neoHookean rela-
tion up to high draw ratios could describe strain hard-
ening behavior in a Leonov model, consisting of a
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Figure 2 Tensile stress—strain curves of the epoxy resin at
20°C at three different strain rates. Thick lines: experimental
data. Dotted lines: simulated results.
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Figure 3 Tensile stress—strain curves of the epoxy resin at
60°C at three different strain rates. Thick lines: experimental
data. Dotted lines: simulated results.

linear compressible spring and an Eyring dash-
p ot.1827.28

RESULTS AND DISCUSSION
Tensile testing

Uniaxial tensile tests at three different strain rates and
three different temperatures were performed. The cor-
responding true stress—strain curves are presented in
Figures 2—4. The epoxy polymer at room temperature
shows a brittle behavior, exhibiting not a specific yield
point, but rather a nonlinear behavior, while the rate
dependence is negligible. At higher temperatures,
namely 60 and 80°C the stress—strain response of the
material changes significantly. The main features of
mechanical behavior of a glassy polymer are exhib-
ited: initially an elastic-viscoelastic response, after-
wards nonlinear viscoelastic-viscoplastic, strain soft-
ening after yielding followed by a subsequent strain
hardening. A strong rate dependence is also obtained.
The transition from brittle to ductile response is attrib-
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Figure 4 Tensile stress—strain curves of the epoxy resin at
80°C at three different strain rates. Thick lines: experimental
data. Dotted lines: simulated results.
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uted to the temperature effect. As it was obtained from
DMA tests, the T, of the material is around 90°C.
Therefore, its behavior at 60°C and especially at 80°C
which is a temperature close to the T, is strongly
affected by temperature.

From Figures 3 and 4 it is obvious that strain soft-
ening is more intense at 60°C, whereas strain harden-
ing is substantially higher at 80°C. According to Wu
and Buckley,'? pronounced post yield softening in
glassy polymers may be associated with initiation and
propagation of highly localized shear bands.

It has been further shown?” that in tests interrupted
in the post yield region, and examined with a polar-
izing optical microscope, these shear bands were no
more distinct. This is consistent with analogous obser-
vations in glassy polystyrene, where sharp shear
bands at room temperature became more diffuse near
the T,.

Extending this observation in our tests, the strain
softening that is manifested at 60°C for the epoxy resin
examined, is negligible at 80°C, which is a tempera-
ture quite close to the T,. The amount of strain soft-
ening is related to an evolution of structure, or equiv-
alently to an evolution of free volume."’ The free-
volume theory considers the ease of local chain
segment rotation during structural relaxation and in-
elastic deformation to depend on the amount of excess
volume “frozen within the glassy state” available lo-
cally. In fact, the disordered nature of the glassy state
means that the polymer will have a distribution of
energy barriers for activated processes, such as stress
induced shear transformation events.'”

Calorimetric measurements during the deformation
of several glassy polymers have revealed that the in-
ternal energy of the sample initially increases with
strain, but levels off at about the steady state flow
stress, suggesting that the material state stops evolv-
ing. Moreover, in a more nonequilibrated state, it will
have higher initial free volume."

Taking into account all this evidence, to formulate
strain softening, the free volume will be treated as an
internal state variable, which evolves with inelastic
straining. In our analysis, free volume acquires a
broader meaning, incorporating the concept of holes,
the defects as well as the space necessary for the
cooperative rearrangement of a group of molecular
segments, i.e., the activation volume. Hence, it will be
assumed that the “activation volume” associated with
those regions follows a normal Gaussian distribution
with a mean value m and a standard deviation s.
Consequently, the strain evolved around those re-
gions follows a similar distribution.*

Therefore, the distribution density in respect to
strain ¢; as a random variable will be given by:

o= el 4] o
L T (15)
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The fraction of activation volume that increased due
to deformation will be given by the probability:

p- ! fe;(éfsmYdéi (16)

where & is the equivalent strain.

At small strains the activation volume has an aver-
age initial value V,, which at the yield point starts
increasing up to a constant value, compatible with a
saturated material state, which is attained with inelas-
tic straining. This state of saturation is related with the
emergence of steady state flow, where the material
state stops evolving.

Let the activation volume at small strains to be
equal to V. The increased fraction due to deformation
will be equal to the probability P of eq. (16). Then at
the subsequent stages of strain the new activation
volume V for every stage of deformation will be given

by:
V=V,+P V,. (17)

According to the Eyring theory, yielding initiates
when the plastic strain rate becomes equal to the im-
posed effective strain rate, and following eq. (12), the
activation volume V|, at the onset of yielding can be
calculated as follows: Writing eq. (12) in respect to a
tensile test, 7., = o0,/ N@' with o, the tensile yield
stress, and Y., = é\,@, (where ¢ is the imposed strain

rate) and solving for o, we obtain:

o,= \3nIné+ 3 1In(A\3) (18)

From the above equation it follows that parameters
Ty and A can be determined from the corresponding
Eyring plots. For our experiments the Eyring plots are
shown for both temperatures in Figure 5. The solid
lines are the best fit of the parameters 7, and A. The
parameter values calculated at the two temperatures
are shown in Table L

Numerical calculations were made using the soft-
ware Mathematica® for step integration of the corre-
sponding equations in the following way: starting
from the deformation gradient tensor F” at the initial
unloaded condition, following eq. (2), a set of differ-
ential equations with unknown quantities the ele-
ments of F” is created. Combining egs. (3), (10), and
(13) and considering that W = 0 the tensor F” could
be evaluated, as well as the tensor D°. Hereafter,
through eq. (1) the elastic deformation gradient tensor
F° can be calculated, as well as the elastic and visco-
plastic components of strain by the expressions:
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Figure 5 Eyring plots for tensile testing at two different
temperatures.

E = %(FF —I)and E* = %(FF -1 (19
where I is the identity matrix tensor.
In every step of calculation the stress dependent rate
viscosity can be estimated, through the above-men-
tioned parameters m,7. The equivalent stress 7., was
calculated at every step of numerical calculation in
terms of eq. (10).

The total stress tensor T versus total strain was then
obtained combining egs. (3),(4), and (14). The formu-
lation of the strain softening that is mainly exhibited at
60°C has been made, taking into account the gradual
increment of activation volume V|, with increasing
deformation, in terms of eq. (17). The mean value m
was fitted to be 0.05 and the standard deviation s was
equal to the one third of the mean value. The rubbery
modulus Cy was estimated as 16 MPa at 60°C and 36
MPa at 80°C, and parameter N equal to 10. The sim-
ulated results at all strain rates and temperatures ex-
amined are plotted in Figures 2—4 in comparison with
the experimental data. From these plots a satisfactory
agreement is obtained for all cases.

Stress relaxation tests

Stress relaxation tests were performed at 60 and 80°C.
At room temperature the epoxy material exhibits neg-
ligible time dependent behavior. The stress-relaxation
curves are depicted in Figures 6(a) and 6(b). This
behavior can be formulated with a stress-relaxation

TABLE I
Model Parameter Values
Temperature
(°C) 7, (MPa) A (s) V, (nm®) 19 MPa s)
60 2473 91363 1.858 226022
80 2.516 12140 1.936 30545
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Figure 6 (a) Stress relaxation curve of the epoxy resin at
60°C and (b) Stress relaxation curve of the epoxy resin at
80°C.

function Y(f), which can be written following the me-
chanical viscoplastic model of Figure 1 and consider-
ing a nonlinear Maxwell model. This nonlinearity is
expressed in terms of the exponent b, as well as the
stress-dependent relaxation time A. Therefore we
have:

Y(#) = Con + E eXp(—;)b (20)

where Cgy is a rubbery modulus related with the
Langevin spring, E is the modulus of the material,
which is affected by temperature, and A is the stress-
dependent relaxation time given by:

Te Te
w7
0 To
=02 (21)

A= E

m3

Exponent b further denotes the nonlinear material be-
havior, as well as the distribution of relaxation times,
that is necessary to describe real material behavior.
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The same parameter values for m,, 7, as evaluated by
tensile testing, were applied to simulate the stress-
relaxation experiments. The quality of fitting is shown
in Figures 6(a) and 6(b), and it is extracted that the
applied viscoplastic model is capable of capturing the
stress-relaxation behavior of the epoxy material stud-
ied. The rubbery modulus was fitted to be equal to
0.05 E, and exponent b equal to 0.3. The values of the
elastic spring modulus E were scaled with tempera-
ture as follows: 3000, 1350, and 800 MPa at 20, 60, and
80°C correspondingly. These values were calculated
from the initial slope of the corresponding stress—
strain curves.

CONCLUSIONS

The tensile behavior under monotonic loading, as well
as stress-relaxation testing has been examined for an
epoxy resin. Experiments were performed at various
temperatures and strain rates. The material behavior
was simulated with the application of a 3D viscoplas-
tic model, consisting of a nonlinear Maxwell in paral-
lel with a Langevin spring. The total deformation gra-
dient tensor related with the mechanical model was
decomposed into an elastic and a viscoplastic part.
The non-Newtonian constitutive equation for the Ey-
ring dashpot expresses a flow rule that leads to the
calculation of tensor D”. A stress dependent viscosity
was then calculated, and was controlling the deforma-
tion material response. The activation volume was
assumed to follow a normal Gaussian distribution,
and then strain softening was formulated assuming an
activation volume evolution in respect to deformation.
A satisfactory agreement between experimental
stress—strain data and stress-relaxation results and the
simulated results was obtained using the same set of
model parameters.
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